
Using Real-Time Measurements in Support of Real-Time Network Management/Talk 1

Abstract –Increased reliability is necessary if the Internet is to
carry information such as voice, video and other enhanced
services. Congestion in the network because of the statistical
nature of packet forwarding is a serious issue that could im-
pede achieving the reliable, timely delivery of data and qual-
ity of service. At present humans monitor the network for
congestion with a variety of data collection mechanisms and
take corrective actions on an ad-hoc basis. Putting humans in
the control loop yields corrective actions that are too slow
because of delays in collecting data and too error prone be-
cause of the complexity of the network.
This paper presents Rondo, an automated control system that
manages congestion in core networks in near real time. It
discusses the architecture and design of the Rondo system
with emphasis on the rerouting engine and data-collection
subsystem.

Rondo relies heavily on MPLS (Multi Protocol Label Switch-
ing), a relatively new technology that is intended to provide
more efficient control over network routing than the destina-
tion-based routing used in the Internet of today. We recog-
nized that MPLS could be used to alter traffic routes dynami-
cally in response to measured or anticipated loads even
though its typical application is in a more static environment.

Index terms – automated network control, network manage-
ment, network performance measurement

I. INTRODUCTION

IP networks are moving into application areas that were
formerly reserved to telephone networks by melding voice,
video and data. These more capable networks have been
termed Next Generation Networks (NGN) in the telephony
community. The management of network traffic has been
explored in detail in the telephony domain for many years.
While this knowledge has some general applicability to the
management of IP networks, these networks are, by the
very nature of their capabilities, more difficult to control.
Individual user traffic carried in an NGN network does not
travel over a dedicated pipe of guaranteed bandwidth like a
TDM trunk. Instead, traffic of differing characteristics
often mingles together along routes that can change with
time. Since the transport layer is not reserved but shared,

 The authors are with Applied Research at Telcordia Technologies, Inc.,
445 South Street, Morristown NJ 07960.
(Email: jla@research.telcordia.com).
Copyright © 2001 Telcordia Technologies, Inc. All rights reserved.

competing flows can consume all available bandwidth
across a link. The opposite condition holds at other times,
where certain routes become extremely underutilized.
While the gain of statistical multiplexing helps to make IP
networks more economical than TDM-based networks,
such imbalances make IP networks highly inefficient to
operate and incapable of providing any quality-of-service
guarantees. Time-of-day variations and link outages com-
pound and magnify these imbalances.

IP packets are routed through the Internet using destina-
tion-based routing, which typically finds the shortest path
through a network. With multiple sources and destinations
of traffic, independent paths typically overlap on certain
common links, a condition that can lead to traffic over-
loads, congestion, loss and excessive delay, while other
links remain underutilized. Balancing the demands of
network traffic across all network paths increases the effi-
ciency of the overall network.

The network planning function typically constructs a set of
routes through the network to accommodate expected traf-
fic demands. These plans are relatively static in nature,
and are meant to deal with long-term trends in traffic.
While reevaluation of planning information using the latest
load data is possible, frequent large-scale adjustments to
the overall route structure of a network are too disruptive
and time consuming. However, if the basic routes are effi-
cient, then the problem of network balancing reduces to
managing anomalous conditions that arise from spot load
changes and link outages.

Responding to changing network events in near real-time
requires a sophisticated monitoring and adjustment process
that manipulates traffic flows while preventing the system
from becoming unstable. Our goal is to detect and correct
an imbalance in time scales approximately 30 seconds to 1
minute. This range strikes a balance between reacting to
short-lived events while providing rapid-enough correc-
tions to network flows before service level agreements are
violated.

A. Network Management Concerns

IP traffic is often described as self-managing. On an indi-
vidual flow basis, IP traffic under TCP or similar protocols
adjusts to the characteristics of the path between its source
and destination. This type of traffic adapts to adverse net-
work conditions (triggered, for example, by packet loss) by
reducing the effective transmission rate to a point where

Using Real-Time Measurements in Support of
Real-Time Network Management

James L. Alberi, Ta Chen, Sumit Khurana, Allen Mcintosh, Marc Pucci and Ravichander Vaidyanathan

Using Real-Time Measurements in Support of Real-Time Network Management/Talk 1

significant losses do not occur. Similarly, aggregate traffic
flows size themselves to the bandwidth capability of the
smallest link. While this mechanism throttles flows back
to the point where they operate as best they can given cur-
rent network conditions, it does not balance the higher
level demands of managing overall link utilization in the
face of multiple network paths. In other words, while
flows adjust to the best their local environment has to of-
fer, they are adversely affected by the inefficiency caused
by imbalances in their global environment.

A further complication occurs with non-adaptive traffic,
such as UDP flows, which do not adjust to network condi-
tions. Under congestion, this type of traffic exhibits loss
that can disrupt services like voice-over-IP. Unconstrained
non-adaptive traffic also squeezes out adaptive traffic,
causing the latter to reduce its effective throughput while
UDP traffic continues to dominate transmission[6]. By
segregating and managing different classes of service, the
network avoids these and other conditions of service deg-
radation.

B. The Trouble with Merely Adding Network Capacity

Internet capacity is rapidly increasing to keep up with
growing demands from users. Information from carriers
indicates that to accommodate a doubling of capacity at the
network-access edge requires that the core expand by a
factor of 8 to 10. Placing this capacity exactly where it is
needed is a formidable task, as network sources and sinks
vary, with not only time of day, but also the advent of new
Internet services.

Systems like Napster alter dramatically the load patterns in
a network by changing a large number of traffic sinks into
a distributed set of traffic sources. Internet sites wax and
wane in popularity, causing shifts in overall network de-
mands. Carriers report that loads far from link saturation
can adversely affect performance. The chaotic behavior of
traffic implies that even extremely lightly loaded links (less
than 3% utilization) exhibit loss. Having exactly the right
amount of capacity in the right location is difficult in a
changing environment. We contend that by adding a layer
of global management, we can better respond to and con-
trol large-scale networks

C. The Role of Multi-Protocol Label Switching

MPLS[16] offers Traffic Engineering, which provides effi-
cient control over the paths that packets take as they trav-
erse a network[2]. The ability to control these paths is at
the heart of Rondo’s ability to manage network congestion.
An optimal set of logical routes or LSPs (Label Switched
Paths) through the network leads to efficient utilization if
the traffic flows are assigned carefully to the LSPs.* Net-

* We use the term LSP and MPLS tunnel interchangeably
in the remainder of this paper.

work administrators may construct multiple paths to the
same destination, thereby overcoming a significant short-
coming of conventional destination-based IP routing.
Adaptive and non-adaptive traffic may be separated to in-
sure proper quality of service. Bandwidth may be explicitly
allocated to meet any service-level agreements in place
between the network provider and the uses.

A secondary benefit of MPLS is increased forwarding effi-
ciency. Packets are assigned to FECs (Forwarding Equiva-
lence Classes) and enter into LSPs at the ingress router.
Once assigned to an LSP, intermediate routers examine
only a minimal header to determine the next hop for the
packet. This scheme substantially reduces the amount of
processing that occurs at intermediate hops although recent
strides in gigabit and terabit IP-routing processors alleviate
the concern over processing time.

Figure 1 shows a typical scenario that arises in Rondo
when using destination routing based on finding the short-
est path. Traffic from nodes A to C and from nodes B to C
flows along a common set of network segments. With
explicit routing through MPLS tunnels, the data from node
B to C can be rerouted to a longer but more lightly con-
gested path. The ability to monitor the global state of the
network coupled with the fine control afforded by MPLS
makes congestion control possible in Rondo.

II. THE RONDO ARCHITECTURE

Rondo uses a feedback loop to govern the behavior of traf-
fic in the network core. It manages the flows that originate
and terminate between various PoPs (Points of Presence) in
the network by directing these flows into the multiple
pathways that are created using MPLS Label Switched
Paths. These LSPs serve as conduits through the network
that are unaffected by the local optimization strategy of
shortest path routing. Rather, Rondo optimizes perform-
ance based on global traffic considerations in the network.

A

B

C

Figure 1. A typical scenario for congestion. Traffic
from A to C and from B to C will typically follow
the same path causing congestion in the common
links. With MPLS, traffic from B to C can be re-
routed along the lower routers, eliminating the
overused links.

Using Real-Time Measurements in Support of Real-Time Network Management/Talk 1

A. System Components

Rondo is composed of the major parts shown in Figure 2.
In the remainder of this paper, we will describe each ele-
ment with emphasis on the data collection subsystem and
the analysis engine.

1) Physical Network

The experimental network is a set of 10 MPLS-enabled
routers and interconnections patterned after a much-scaled-
down representation of a major service provider’s network
backbone as depicted on their web site. We note that the
provider has 2500 PoPs worldwide so our model has only
rough equivalence to reality. However, even with only ten
routers, our network exhibits complex and often fascinat-
ing behaviors. Routers are connected with 10-megabit
links, which makes possible the creation of realistic over-
load conditions. Each router models a PoP (Point of Pres-
ence) on the network where customer nodes are attached.
In Rondo, each node attached to a PoP is a PC that sends
and receives packets.

The network uses a combination of Cisco® 3620 and 3640
series routers. The release of Cisco’s IOS (Internet Operat-
ing System) available on our routers allows only destina-
tion-based selection of MPLS tunnels. Upgrades will ulti-

Cisco is a registered trademark of Cisco Systems, Inc.

mately allow selection of the tunnels based on other pa-
rameters in the IP packet.

2) Programmable Load Generators and Loading
Strategy

We use a collection of PCs programmed[1] to generate
time-varying loads similar to those expected in an opera-
tional network. Background network traffic on the net-
work is constant in time and is generated by commercially
available packet generators. Loads are carefully crafted to
cause a buildup of congestion that does not have an overall
steady state solution, and are designed to stress the given
physical topology.

3) Data-Collection System

The data-collection system uses a variety of devices and
techniques to monitor the conditions in the network. These
include both active and passive methodologies that capture
such characteristics as throughput, loss, delay and jitter.
Data collection, a key part of Rondo, uses an extensible
architecture to provide rapid processing of data under time
constraints for its collection, reduction and transmission.
Data flow from the network probes through the collection
system to the analysis engine with little latency and to ar-
chival storage at a lower priority. Data are retained in a
database system for other applications such as service-level
management that do not require rapid data processing. We
describe this part of the system in detail below.

Data
Collection
System

VPN Loads

Analysis
Engine

New
LSPs

Real-Time Data
Network Configuration,
LSP Configuration,
Performance Data

Load
Generators

LSP
Configuration

Network Probes

Control

MPLS Network

Control

Archival Data

Figure 2. Overall Rondo architecture illustrating the relationship among major functional components.

Using Real-Time Measurements in Support of Real-Time Network Management/Talk 1

4) Data Model and Database

Rondo uses the database for a variety of classes of informa-
tion including physical and logical network topology, con-
figuration information and archived measurement data.
The algorithms, displays and other components are driven
by the information described by this model, and as such,
the organization of this model is crucial to the effective-
ness of Rondo. The model, which is important for other
applications, is realized in a relational database. The most
important function of the database is to hold the state of the
network topology, which changes as the system reroutes
LSPs to alleviate congestion. The analysis and reroute
engine periodically updates the topology as the network is
reconfigured.

5) Analysis and Rerouting Engine

This element of the system contains techniques for detect-
ing congestion in a network and altering the existing traffic
flows to eliminate an overload condition. The engine is
designed to focus on more than link utilization, which is
the most basic metric of network performance. Utilization
indicates the level of activity between network elements
and is often viewed as a measure of network congestion.

This view is too simple when one considers the classes of
traffic that flow over an IP network. High utilization of a
link is one form of congestion, but others might include
excessive delay, jitter or high packet loss, all of which
could happen at relatively low levels of link utilization.
These are measures of congestion that seriously affect pro-
posed services in next-generation IP networks, including
voice and video. The engine is designed use any measur-
able quantity as an indication of a network problem that
needs correction.

6) MPLS Configuration and Control

Rondo relies on MPLS to form explicit paths through the
core network. Explicit paths allow precise control over the
placement of traffic flows within the routed domain of
Rondo. All traffic in Rondo flows through explicitly
routed MPLS tunnels, which specify each node along a
path from the ingress to egress routers. The network con-
figuration is initially optimal in the sense that all tunnels
travel via the shortest path in the network. Once estab-
lished, packets enter the MPLS tunnels as a function of
their destination address and are delivered to the egress
router. Rondo thus uses MPLS as a mechanism for packet
forwarding that is not directly aware of quality of service.
Mixing packets with different levels of quality of service in
an LSP is possible though but limits the effectiveness of
available controls.

Once the initial explicit paths are established, the analysis
and reroute engine operates to reroute packets through a
path established by a new MPLS tunnel, which may no
longer be the shortest path. This action currently takes
place via IOS commands that are issued from the control-
ler[4]. When MPLS traffic-engineering MIBs[5][18][19]

become available, the controller will use SNMP to estab-
lish the new routes.

B. System Operation

The analysis and rerouting engine is in overall control of
the system. The engine communicates with the data col-
lection system to establish a schedule of network meas-
urements. As the data collection system takes each meas-
urement, it notifies the analysis and rerouting engine of the
presence of new data. The engine combines the new data
with the current system configuration and previous data to
decide on the appropriateness of rerouting an MPLS tun-
nel. If a move is appropriate, the analysis engine reconfig-
ures the network through the LSP configuration control
and updates the network state in the database.

As we discuss in the following, the route of the new MPLS
tunnel does not necessarily preserve overall network opti-
mality. Rather our goal is to reroute traffic as quickly as
possible to minimize the congestion at the expense of
achieving a theoretical optimum over the whole network.
Global optimization might imply moving many or even all
the routes in the network. The strategy in Rondo is to
move from one to a few MPLS tunnels over a period of a
few minutes with minimal disruption to network traffic.

III. ALGORITHM

The heart of the analysis and rerouting engine is the rerout-
ing algorithm, which is described in detail in this section.
We first outline some assumptions delineating the opera-
tion of the algorithm and then give a systematic exposition.

A. Assumptions

1. The network is assumed to contain enough physical
nodes and links so that sufficient alternate paths exist
to make the possibility of rerouting practical.

2. The path selection algorithm is not required to be op-
timal. The goal is to reroute traffic as quickly as pos-
sible to minimize the amount of affected traffic. The
path is selected subject to constraints on bandwidth
consumption and hop count, but path selection does
not consider the improvements that can be obtained
with a global analysis of the network. For example,
simultaneously rerouting multiple LSPs is not consid-
ered.

3. The state of the system is available and can be used to
relate a congested link back to the set of LSPs that
contribute to the traffic on that link.

4. Information about the state of each link is measured
and available for the analysis and rerouting engine.
These measurements include utilization, delay, loss
and jitter for each LSP on each link. In the simpler
case where delay, loss and jitter are not considered,
bandwidth utilization of each LSP on each link will

Using Real-Time Measurements in Support of Real-Time Network Management/Talk 1

permit the rerouting of traffic within the available
bandwidth space on other links.

5. Where there are several classes of service on a net-
work, the algorithm assumes each class of service is an
overlay network that is independent of the others. The
algorithm will only manipulate LSPs that are assigned
to a single class. It will not attempt to vary the amount
of traffic carried in total on each class. The class-of-
service settings are established during the configura-
tion process and are not adjusted in response to short
term needs. For example, assuming gold, silver,
bronze and best-effort network classes, this algorithm
will not displace silver traffic to accommodate exces-
sive gold traffic. It also will not permit excessive sil-
ver traffic to consume unused gold capacity, as the lat-
ter can become unavailable at any moment.

B. Invocation

The analysis and rerouting engine holds the current state of
the network, so it drives the execution of the algorithm.
The engine accepts link congestion data from the data-
collection system, which notifies the engine every t sec-
onds. The data levels are divided into two zones: normal
and danger. A link is considered to be in the normal zone
if its datum is under M, a tunable parameter, and is in the
danger zone when it is over or equal to that value. After
accepting the data, the engine also checks and collects
links that are in the danger zone into a set S. If S is non-
empty at the end of an update cycle, then the rerouting al-
gorithm is triggered. When the algorithm reroutes an LSP,
the data reading cycle is increased to T to allow time for
the network to stabilize.

While several types of data may be collected from the net-
work, Rondo currently uses link utilization as its metric.
Data on link loads arrive at the engine every 30 seconds (t
= 30), at which time links over 80% capacity (M = 0.8) are
placed in the set, S, of candidates for rerouting. After re-
routing, the network is allowed to settle for 60 seconds (T
= 60) to eliminate possible thrashing.

C. Algorithm Details

The algorithm discussed here is designed to reduce the
utilization on overloaded links to below the threshold of
congestion, M. It could as well apply to other metrics of
congestion, e.g. delay, loss or jitter, provided a model ex-
ists for the composition of these parameters under the ag-
gregation of network traffic flows. Utilization composes by
the addition of the utilizations of the individual flows until
link capacity is reached.

The goal of this algorithm is to reduce as many overloaded
links as possible. Each invocation of the algorithm consid-
ers rerouting one LSP in the candidate set, S, and uses link
bandwidth in the calculation of the cost. The steps in-
volved are as follows:

1. Examine all links for aggregate indications of conges-
tion. As explained above, a link is congested if its
utilization is over the pre-configured threshold M.

2. For all congested links, acquire the set L of LSPs that
pass through any congested links.

3. Sort L according to the impact of congestion on par-
ticular LSPs. In the simplest case, this is by descend-
ing order of consumed bandwidth.

4. Perform a constrained shortest path first (CSPF)
search to find an optimal path, l', from the source of L
to the sink with the least cost, using a modified
Dijkstra's algorithm for single source to single destina-
tion shortest path algorithm. The objective function
for establishing the link cost is a complex function of
link utilization and other constraints to improve the
overall distribution of LSP loads. For example, our
initial function operated solely on resulting link band-
width. We are investigating the incorporation of other
factors such as avoiding back-up links or mutually in-
terfering traffic flows.

5. Among the paths found in step 3, select the LSP, l,
with the least cost alternative optimal path, l'.

6. Reroute the selected LSP.

7. Update the link load statistics to account for the re-
routed LSP. The system continues to maintain a short
history of the network loads.

IV. DATA COLLECTION

The heart of collecting data from the network lies in the
network probes. These are usually commercial hardware
boxes – often stand-alone, sometimes associated with
routers – that measure network traffic at various protocol
levels. Probes present the data they collect in a variety of
often-inconsistent ways. The job of the data-collection
subsystem is to regularize and reduce the data so the other
parts of the Rondo system have timely and efficient access
to it.

The requirement of timely and rapid collection arises from
the need for system stability in the network. As a rule of
thumb, the delay in corrective action taken in the network
should be several times as long as the time taken to per-
ceive the need for a correction. Thus if Rondo inspects the
network every 30 seconds, the data it has available should
not be more than 3 seconds old. We easily meet this re-
quirement with the distributed architecture outlined below.
There are further requirements for stability that are ex-
plored in the previous section.

In what follows, we outline the diverse nature of some of
the probes needed in Rondo. The variety of the data, the
processing necessary for Rondo and the magnitude of the
data stream argues for a distributed collection system with

Using Real-Time Measurements in Support of Real-Time Network Management/Talk 1

peer-to-peer relationships and significant processing power
close to the elements being measured. Reducing the data
near its source, aggregating the reduced data into efficient
packages and efficiently transmitting the data to the control
elements of the system is key to automating the manage-
ment of a network. The sections that follow cover the is-
sues of synchronous versus asynchronous readout of the
data, distributed versus centralized data reduction and
methods for archiving the data[14].

A. Probes

This section explores some of the characteristics of probes
that make necessary a relatively complex framework for
data collection. Network probe is the generic term for
hardware or software that contains or uses a network inter-
face to measure data moving through a network. Within
this broad definition, there are many styles of probe.

One of the most common types for network measurements
is based on SNMP (Simple Network Measurement Proto-
col[7]), which does not address the form and type of col-
lected data. SNMP has rather low-level functionality and
high overhead, which makes it relatively inefficient in
large-scale networks. Its primary advantage is its ubiquity.
SNMP defines how data move between the probe (often
termed an agent) and the client (often referred to as a
monitor).

A MIB (Management Information Base) defines the data
structures, which are accessed synchronously through an
addressing scheme based on a hierarchical name space.
MIBS are fundamentally a definition of a global data space
that has no inherent operations except reading and writing
data cells through the protocol. Relatively recent exten-
sions have added operations that are more complex by de-
fining control variables that implement what amounts to
function calls.

In addition to synchronous data transfer, SNMP has a
primitive facility that allows the probe to send event notifi-
cation to its client. These events are termed traps, and are
not used in the collection system

1) MIB-2

The IETF (Internet Engineering Task Force) defines a wide
variety of MIBs, all of which fall into two broad categories
with some overlap, management MIBs and traffic-
engineering MIBs. The Rondo collection subsystem is
concerned only with the latter. The most commonly used
MIB with a traffic engineering component is MIB-
2[8][9][10][11], which is totally passive and enables packet
and octet counts for physical and sometimes logical inter-
faces at the link level. Data are collected from packets
passing both to and from an interface. Most computers and
routers define MIB-2 in their SNMP servers. One of the
most notable attributes of MIB-2 is its complete lack of
awareness of IP and higher-level protocols when monitor-
ing network traffic flows. It measures only link-level
packets and records total counts not just the packet pay-

load. Still it is a useful tool and provides important data to
Rondo.

The notion of an interface is ultimately relatively com-
plex[12]. MIB-2 was originally developed as a tool for
counting packets and octets through a NIC (Network Inter-
face Controller) in computers and routers. These serviced
Ethernets, token rings, T1’s or similar connections. MPLS
(Multi-Protocol Label Switching) occupies an unusual po-
sition in the protocol stack. MPLS is not a network layer
protocol since it lacks end-to-end addressing and routing
functionality. Further, MPLS is not a link-level protocol,
since MPLS constructs such as LSPs can span multiple
routers. Vendors typically represent LSPs in one of two
methods. (1) LSPs are represented as logical interfaces or
as tunnel interfaces; (2) LSPs are represented as entries in
the routing table. Cisco’s implementation uses (1) and
hence the head-end of each LSP has an interface definition
in MIB-2. The data derived from these LSP interfaces are
important tools for congestion control in Rondo.

2) RMON

RMON[21] and RMON-2[20] are passive SNMP-based
probes that are more sophisticated than the MIB-2 probes.
These probes are aware of IP, TCP and application-level
layers in the protocol stack. Although not aware of indi-
vidual sessions at these upper layers, RMON-2 can moni-
tor flows between pairs of source and destinations or flows
to or from a single address at the network protocol or ap-
plication level. We define flows as streams of packets with
specified source and/or destination addresses without re-
spect to transport-level sessions. Inspecting the well-
known port numbers present in the source or destination
addresses monitors the application layers. In addition to
these functions, RMON and RMON-2 can define arbitrary
filters and either count or capture packets that satisfy the
filter. They can also fire traps based on thresholds or cap-
ture time sequences of network measurements.

RMON and RMON-2 have capabilities defined in the IETF
standards documents that outstrip the vendors ability to
implement. This statement is particularly true on links
with high data rates that transport traffic among many
sources and destinations. Typically, RMONs are built into
a router, or they may exist as stand-alone hardware de-
vices. In either case, RMONs are prone to exhaust mem-
ory or processor resources when configured to measure
large amounts of data. Pair-wise flows on busy links can
yield an immense traffic matrix. Data captured at high
rates exhausts buffer space beyond the ability of the client
to retrieve it. Many routers use the same the processor for
routing and monitoring functions at the expense of moni-
toring under heavy load.

Using Real-Time Measurements in Support of Real-Time Network Management/Talk 1

3) Service Assurance Agent

Cisco's Service Assurance Agent� (SAA) is an active
monitoring agent that is embedded in Cisco's larger
routers. Cisco's network monitoring and management
products, such as CiscoWorks2000™ use SAA as their
source of performance data. Provisioning of and data ex-
traction from SAA can be done through SNMP, and Cisco
publishes the MIB description[13], which makes SAA
available for use by third-party software. At the network
layer, SAA provides a simple echo facility that can com-
pute round trip delays and count packet drops using nu-
merous protocols, including IP, SNA, IPX, appleTalk and
DECnet. The equipment at the far end only needs to pro-
vide an appropriate echo service, and need not be supplied
by Cisco. SAA also can measure jitter using UDP. These
measurements are one-way (source to destination and des-
tination to source), so a Cisco router is required at the other
end to return the traffic. The data provided can also be
used to calculate one-way loss and delay. SAA can also
measure response times of higher-level services, including
TCP connections, DNS, DHCP, FTP and WWW.

4) In-Line Probes

Certain manufacturers are building probes that intercept
the packet stream to insert tagging packets that mark points
in the flow. The probes operate in pairs with the sending
end inserting the tag and the receiving removing the tag,
which carries reference data about the packet stream. For
example, these data might consist of time-stamps, counts
of packets sent or received since the last tag packet. With
this sort of synchronization various quantities become
available that are difficult to compute with other methods
including absolute measurements of packet loss.

CiscoWorks2000 and SAA are trademarks of Cisco Sys-
tems, Inc.

5) Rondo Softprobe

Many other probes (e.g. [3][15]) exist on the net and in the
literature that we cannot cover in this paper. However, an
especially useful set of measurements to have for conges-
tion control includes delay, loss and jitter for a one-way
packet transit of the network. These measurements should
be taken through MPLS tunnels if present and at all level
of QoS (Quality of Service). Measuring one-way delay,
loss and jitter requires accurate, absolute time scales at
both the sending and receiving nodes. In the past, this re-
quirement has been difficult to meet, but now with easily
available GPS receivers, it is possible to satisfy. The
Rondo Softprobe provides these measurements to Rondo
[17]. The SoftProbe is an active probe. It samples the
quantities it needs by emitting a stream of packets. Delay,
loss and jitter are computed from timing measurements of
the packet stream.

6) Probe Attributes

The probes discussed above may be classified according to
certain attributes that affect their interaction with the data
collection subsystem. These attributes are summarized in
the following:

Intrusiveness – A probe may have the packet stream
pass through its fabric enabling it to insert and remove
packets that function as markers in the flow. The
overwhelming majority of probes are out-of-line with
respect to the packet stream. They can be physically
inserted or removed from the system without disrupt-
ing the flow. In-line probes require the stream to be
physically disconnected before the probe is inserted.

Probe Type Intrusiveness Activity Solicitation Standard Independent
Collection

MIB-2 Out of line Passive Synchronous SNMP No

RMON Out of line Passive Synchronous SNMP Yes

SAA Out of Line Active Synchronous SNMP Yes

SoftProbe Out of Line Active Synchronous Ad Hoc Yes

Ping Out of Line Active Synchronous Ad Hoc No

“Future” In Line Active Synchronous Ad Hoc ?

Table 1. The attributes of various probes mentioned in the text. MIB-2, RMON, SAA and SoftProbe are
used with Rondo. The “Future” types of probe are not yet available from their manufacturers.

Using Real-Time Measurements in Support of Real-Time Network Management/Talk 1

Activity – A probe may obtain its data by passively
monitoring the traffic flow, or it may actively insert
packets in the stream to take it measurements. The at-
tribute is distinct from the intrusiveness of the probe.
The ping command running on a PC connected to an
Ethernet is active but out-of-line. One can disconnect
the computer without disrupting the network.

Solicitation – A measurement might be requested syn-
chronously from a probe, in which case the client
waits for the result, or it might be sent asynchronously
as part of a notifying event. The latter might occur if a
threshold were crossed as part of a measurement se-
quence. Most probes operate synchronously, but our
architecture allows watching the data stream and emit-
ting notifying events to the rest of the system.

Standard – Most commercial network probes use
SNMP to communicate with the client, but other stan-
dards are possible including CORBA, EJB, JMS,
DCE, etc.

Independent Collection – Rather than counters
measuring packets and octets, independent collection
implies a higher level of functionality. A probe might
collect a table of measurements over a certain period
and might further reduce the data into a few derived
quantities.

Table 1 classifies the probes discussed in the text accord-
ing to these attributes. The following sections discuss the
architecture of the Rondo data collection subsystem and
out-lines how this architecture adapts to each of the attrib-
utes.

B. Data Collection Architecture

Rondo uses an object-oriented architecture. The data col-
lection subsystem uses the five base classes shown in Fig-
ure 3. Each class contains the fundamental methods that
manage data collection. Each of these classes is special-
ized in a fully realized data collection subsystem.

Figure 3. The Rondo architecture showing the principle base classes. Implementation classes are all derived
from these. Method calls that cross the client-server boundary are made through Java RMI (Remote
Method Invocation).

Using Real-Time Measurements in Support of Real-Time Network Management/Talk 1

Figure 3 depicts a client-server architecture. The funda-
mental class on the server side is the Collector, which
oversees the management of a particular type of data. In
Rondo, these include data from MIB-2 interfaces, MPLS
forwarding tables and SAA timing measurements. We
intend that the client-side Monitor activates a single copy
of a particular Collector on each server. For example, a
server would have a single instance of the interface-data
collector and a single copy of the SAA-data collector.

Each Collector uses the createStream method to instantiate
one or more MeasurementStream objects. A Measure-
mentStream, as the name implies, is a sequential, time-
stamped set of data of the type specified by the Collector
that arises from a particular device or agent. For example,
each MIB-2 interface is the source of a stream of Inter-
faceMeasurement objects. Associated with each Meas-
urementStream is a stream pointer that is analogous to a
file pointer in the Unix operating system. The getMeas-
urement method reads a group of data points specified by
the size parameter in the method and advances the stream
pointer by that amount. Other methods present in the Col-
lector class include cloneStream, which is analogous to the
dup system call in the Unix operating system, getStream,
which returns a MeasurementStream by the name assigned
to it during its creation, and listStream, which reports the
names of all active MeasurementStream objects.

Another important method in MeasurementStream is con-
trolStream, which determines that starting time, stopping
time and frequency of measurements for a given Measure-
mentStream. A stream may have its parameters changed
asynchronously. It need not complete the current course of
measurements before its collection parameters are modi-
fied in any way.

Associated with each MeasurementStream are one or more
StreamPolicy objects, which are passed as arguments from
a Monitor into the registerMonitor method of the Meas-
urementStream class. StreamPolicy objects are extensions
of a Monitor. They should contain logic that is intended to
reduce data near to the point of measurement. For exam-
ple, suppose that the Hurst parameter were important to a
particular network-management function. Rather than
move all the data to a centralized processor, we believe a
superior design processes the collected data close to the
source. Another function that might be included in a
StreamPolicy object is threshold detection, which implies
asynchronous notification of the client.

StreamPolicy objects support this capability through asso-
ciated MonitorAction objects, which contain callback
methods from the server side to the client. The base class,
MonitorAction, has a few fundamental methods defined,
but the intent is for the application to extend this class in
ways specific to the needs of the problem. The methods,
highWater and Overflow, are notifications to the applica-
tion that data in a MeasurementStream need attention. The
exception method is intended as a general alarm for server-
side problems and sendData provides an asynchronous
update capacity.

The MeasurementStream class also contains methods to
register and de-register StreamPolicy objects (register-
Monitor and deregisterMonitor) as well as a method to
check the status of a StreamPolicy (checkMonitor). Indi-
vidual StreamPolicy objects are referenced by an identifier
that is unique in time and space.

StreamPolicy objects and their associated MonitorAction
objects form the basis of a general and flexible computa-
tional model. Because both classes are logically part of an
application, they can be tailored to meet the needs of a par-
ticular network management problem without having to
custom tailor the data collection servers to deal with the
changing needs of applications. The servers can concen-
trate on efficient data collection and stewarding. The ap-
plications have the ability to offload some processing to
the servers, thereby reducing the flow of data across the
management network and the amount of data reduction
necessary. This strategy is particularly effective when
coupled with automatic code distribution as we discuss in
the following section.

C. Design and Implementation

The Rondo data collection architecture is realized as a set
of Java classes. Each of the types discussed above is either
an abstract base class or an interface definition. We con-
struct the collection system using standard Java-based
tools, but other implementations and programming para-
digms fit the architecture as well.

1) Programming Paradigms

Data collection in Rondo uses the Java RMI (Remote
Method Invocation) subsystem as its method of distributed
computing. Both advantages and disadvantages arise from
this decision. RMI is fundamentally formulated with re-
mote procedure calls and threads as the most important
entities. Each thread holds state, and the several threads
comprising a process must synchronize their operations on
shared data. Certain threads are allowed to block as in the
class that contains the timed measurement loop, because
others threads are live and waiting to process other remote-
procedure calls. This sort of design is relatively easy for
developers to handle because of the sequential nature of
the processing, but can lead to pitfalls when dealing with
access to shared data. We chose this design as a vehicle
for a prototype implementation because it was easy to set
up in a laboratory environment.

However, our architecture is not limited to this style of
programming. A more common approach for large sys-
tems is the more loosely coupled software bus, which is a
message passing system at its base. Each entity on the bus
registers its interest in receiving certain classes of message
through a publish-and-subscribe mechanism. The method
calls devolve into lower-level messages and, while threads
are not as important in this programming style, they are
still available to the developer.

Using Real-Time Measurements in Support of Real-Time Network Management/Talk 1

For example, timed measurement loops work differently in
this paradigm. Instead of sleeping within a thread, the
message requesting a measurement waits in a queue for
delivery at a specified time. At message delivery the sys-
tem takes a new measurement and requeues a new meas-
urement message for delivery at the next time interval. All
state required to control the measurement loop is retrieved
at the beginning of each measurement and stored at its end.

Independent of programming paradigm, Java has a large
advantage over other systems because of object serializa-
tion and automatic code distribution, which is a concomi-
tant feature of serialization. RMI passes local objects by
value and has a feature allowing the receiving process to
find the object-method code through a standard URL. Re-
mote objects, i.e. those with remotely invoked methods, are
passed by reference through a standardized stub generation
technology. In our application, StreamPolicy objects,
which are local Java objects, pass by value through the
system. Because these tend logically to be part of an ap-
plication, its functionality is automatically distributed
throughout the system without recourse to explicit software
upgrades. Each application can customize its view of the
same data stream without explicitly changing the function-
ality of the server.

2) Probes and Data Collection

We discussed the characteristics of various types of net-
work probe in Section IV. Four of the five attributes affect
the design of the data collection system – Activity, Solicita-
tion, Standard and Independent Collection. The probes
listed are consistent with the architecture of the data collec-
tion subsystem. The MeasurementStream class and its de-
scendents have the capacity to isolate the functional details
of collection technology from the rest of the system.

V. DISCUSSION AND ISSUES

A prototype of the Rondo system has been running in a
laboratory environment since September of 2000. Rondo
collects packet and octet counts for physical network inter-
faces and virtual LSP interface using MIB-2. Delay and
jitter are collected using SAA. Packet forwarding data for
LSPs are collected at intermediate routers in an LSP using
an ad-hoc connection to the command-line interface of
IOS. All of these sources fit within the Rondo measure-
ment framework, which forwards the data to the analysis
and rerouting engine.

Figure 4. The main screen in the Network Operations Center for Rondo. The Rondo laboratory network
is based on Cisco routers using 10 MBit Ethernets as links. Our experimental network is modeled after a
large network provider’s core infrastructure. Although depicted here in black and white, the colors on
each link in the display represent utilization from the highest, red, to lowest, dark green, according to the
scale at the bottom of the display.

Using Real-Time Measurements in Support of Real-Time Network Management/Talk 1

We have constructed a graphical user interface, shown in
Figure 4, that might be used in a Network Operations Cen-
ter as part of Rondo. In the current implementation, the
analysis and rerouting engine controls the display. In a
system that controls a deployed network, the analysis and
rerouting engine would be separate from the user interface.

The NOC display shows a map of the United State with the
“location” of each PoP in our experimental network. Con-
trols at the top of the display allow the operation to start
and stop automatic congestion control. Although the fig-
ure is black and white here, the inter-PoP links indicate
their utilization as a series of colors from highest utiliza-
tion, red, on down through the colors of the spectrum to the
lowest utilization, dark green. Links are bi-directional with
the attached numbers giving link utilization in each direc-
tion.

At the moment depicted, Rondo has just rerouted an MPLS
tunnel

• from LA→SLC→ATL→DC

• to LA→SLC→ATL→DC

because the ATL→DC link was overloaded. The new
route has a series of dashes running through it and the old
route has the dashes alongside.

Although Rondo works well as a proof of concept in a
laboratory environment, there are many issues remaining
as it moves towards deployment in a full-scale network.
We outline some of the more difficult ones here.

• Although Rondo has proven stable under rerout-
ing of single LSPs with a small network, what
happens in a larger network?

• Can Rondo move several LSPs in one operation to
handle cases of simultaneous overloads?

• Can Rondo move several LSPs in one operation
for a single overloaded link to achieve a more op-
timal solution? Over what domain of LSPs
should optimization take place?

• We believe our method of pushing application
functionality to servers distributed in the network
is a scalable solution, but it should be tested in a
production environment with a larger data flow.

• What strategies are there to reduce the amount of
data that the analysis and rerouting engine needs
to make intelligent changes in MPLS tunnels?

REFERENCES

[1] B. Adamson, The MGEN Toolset,
http://manimac.itd.nrl.navy.mil/MGEN.

[2] D. Awduche, J. Malcolm, J. Agobua, M. O'Dell, J. McManus,
Requirement for Traffic Engineering for MPLS, RFC 2702, Septem-
ber 1999.

[3] N. Brownlee, Traffic Flow Measurement: Meter MIB, RFC2720,
October 1999.

[4] Cisco™ Configuration Guides and Command References,
http://www.cisco.com.

[5] J. Cucchiara, H. Sjostrand & J. Luciani, Definitions of Managed
Objects for the Multiprotocol Label Switching, Label Distribution
Protocol (LDP), draft-ietf-mpls-ldp-mib-07.txt, August 2000.

[6] J. P. Curtis, J. G. Cleary, A. J. McGregor & M. W. Pearson,
Measurement of Voice Over IP Traffic, Pam2000: Passive and Ac-
tive Measurement Workshop, Hamilton, New Zealand, pp 43-59,
April 2000.

[7] D. Harrington, R. Presuhn & B. Wijnen, An Architecture for
Describing SNMP Management Frameworks, RFC 2571, April
1999.

[8] K. McCloghrie & M. Rose, Management Information Base for
Network Management of TCP/IP-based Internets: MIB-II, RFC
1213, March 1991.

[9] K. McCloghrie, SNMPv2 Management Information Base for the
Internet Protocol using SMIv2, RFC 2011, November 1996.

[10] K. McCloghrie, SNMPv2 Management Information Base for the
Transmission Control Protocol using SMIv2, RFC 2012, November
1996.

[11] K. McCloghrie, SNMPv2 Management Information Base for the
User Datagram Protocol using SMIv2, RFC 2013, November 1996.

[12] K. McCloghrie & F. Kastenholtz, The Interfaces Group MIB
using SMIv2, RFC2863, June 2000.

[13] L. Metzger, Response Time Monitor MIB,
ftp://ftp.cisco.com/pb/mibs/v2/CISCO-RTTMON-MIB.my.

[14] V. Paxson, G. Almes, J. Mahdavi & M. Mathis, Framework for
IP Performance Metrics, RFC 2330, May 1998.

[15] V. Paxson, A. Adams & M. Mathis, Experiences with NIMI,
PAM 2000: Passive and Active Measurement Workshop, Hamilton,
New Zealand, pp. 87-97 April 2000.

[16] E. Rosen, A. Viswanathan & R. Callon, Multiprotocol Label
Switching Architecture, RFC 3031, January 2001.

[17] B. Siegell, J. DesMarais, M. Garrett, P. Seymour & D. Shall-
cross, Felix Project: Topology Discovery From One-Way Delay
Measurements, PAM 2000: Passive and Active Measurement Work-
shop, Hamilton, New Zealand, pp 107-115, April 2000.

[18] C. Srinivasan, A. Viswanathan & T. Nadeau, MPLS Traffic
Engineering Management Information Base Using SMIv2, draft-ietf-
mpls-te-mib-05.txt, November 2000.

[19] C. Srinivasan, A. Viswanathan & T. Nadeau, MPLS Label
Switch Router Management Information Base using SMIv2, draft-
ietf-mpls-lsr-mib-07.txt, January 2001.

[20] S. Waldbusser, Remote Network Monitoring Management In-
formation Base Version 2 using SMIv2, RFC 2021 January 1997.

[21] S. Waldbusser, Remote Network Monitoring Management In-
formation Base, RFC2819, May 2000.

	Introduction
	Network Management Concerns
	The Trouble with Merely Adding Network Capacity
	The Role of Multi-Protocol Label Switching

	The Rondo Architecture
	System Components
	Physical Network
	Programmable Load Generators and Loading Strategy
	Data-Collection System
	Data Model and Database
	Analysis and Rerouting Engine
	MPLS Configuration and Control

	System Operation

	Algorithm
	Assumptions
	Invocation
	Algorithm Details

	Data Collection
	Probes
	MIB-2
	RMON
	Service Assurance Agent
	In-Line Probes
	Rondo Softprobe
	Probe Attributes

	Data Collection Architecture
	Design and Implementation
	Programming Paradigms
	Probes and Data Collection

	Discussion and Issues
	References

