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Abstract –Increased reliability is necessary if the Internet is to 
carry information such as voice, video and other enhanced 
services.  Congestion in the network because of the statistical 
nature of packet forwarding is a serious issue that could im-
pede achieving the reliable, timely delivery of data and qual-
ity of service.  At present humans monitor the network for 
congestion with a variety of data collection mechanisms and 
take corrective actions on an ad-hoc basis.  Putting humans in 
the control loop yields corrective actions that are too slow 
because of delays in collecting data and too error prone be-
cause of the complexity of the network. 
This paper presents Rondo, an automated control system that 
manages congestion in core networks in near real time.  It 
discusses the architecture and design of the Rondo system 
with emphasis on the rerouting engine and data-collection 
subsystem. 

Rondo relies heavily on MPLS (Multi Protocol Label Switch-
ing), a relatively new technology that is intended to provide 
more efficient control over network routing than the destina-
tion-based routing used in the Internet of today.  We recog-
nized that MPLS could be used to alter traffic routes dynami-
cally in response to measured or anticipated loads even 
though its  typical application is in a more static environment. 

Index terms – automated network control, network manage-
ment, network performance measurement 

I. INTRODUCTION 

IP networks are moving into application areas that were 
formerly reserved to telephone networks by melding voice, 
video and data.  These more capable networks have been 
termed Next Generation Networks (NGN) in the telephony 
community.  The management of network traffic has been 
explored in detail in the telephony domain for many years.  
While this knowledge has some general applicability to the 
management of IP networks, these networks are, by the 
very nature of their capabilities, more difficult to control.  
Individual user traffic carried in an NGN network does not 
travel over a dedicated pipe of guaranteed bandwidth like a 
TDM trunk.  Instead, traffic of differing characteristics 
often mingles together along routes that can change with 
time.  Since the transport layer is not reserved but shared, 
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competing flows can consume all available bandwidth 
across a link.  The opposite condition holds at other times, 
where certain routes become extremely underutilized.  
While the gain of statistical multiplexing helps to make IP 
networks more economical than TDM-based networks, 
such imbalances make IP networks highly inefficient to 
operate and incapable of providing any quality-of-service 
guarantees.  Time-of-day variations and link outages com-
pound and magnify these imbalances. 

IP packets are routed through the Internet using destina-
tion-based routing, which typically finds the shortest path 
through a network.  With multiple sources and destinations 
of traffic, independent paths typically overlap on certain 
common links, a condition that can lead to traffic over-
loads, congestion, loss and excessive delay, while other 
links remain underutilized.  Balancing the demands of 
network traffic across all network paths increases the effi-
ciency of the overall network. 

The network planning function typically constructs a set of 
routes through the network to accommodate expected traf-
fic demands.  These plans are relatively static in nature, 
and are meant to deal with long-term trends in traffic.  
While reevaluation of planning information using the latest 
load data is possible, frequent large-scale adjustments to 
the overall route structure of a network are too disruptive 
and time consuming.  However, if the basic routes are effi-
cient, then the problem of network balancing reduces to 
managing anomalous conditions that arise from spot load 
changes and link outages. 

Responding to changing network events in near real-time 
requires a sophisticated monitoring and adjustment process 
that manipulates traffic flows while preventing the system 
from becoming unstable.  Our goal is to detect and correct 
an imbalance in time scales approximately 30 seconds to 1 
minute.  This range strikes a balance between reacting to 
short-lived events while providing rapid-enough correc-
tions to network flows before service level agreements are 
violated. 

A. Network Management Concerns 

IP traffic is often described as self-managing.  On an indi-
vidual flow basis, IP traffic under TCP or similar protocols 
adjusts to the characteristics of the path between its source 
and destination.  This type of traffic adapts to adverse net-
work conditions (triggered, for example, by packet loss) by 
reducing the effective transmission rate to a point where 
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significant losses do not occur.  Similarly, aggregate traffic 
flows size themselves to the bandwidth capability of the 
smallest link.  While this mechanism throttles flows back 
to the point where they operate as best they can given cur-
rent network conditions, it does not balance the higher 
level demands of managing overall link utilization in the 
face of multiple network paths.  In other words, while 
flows adjust to the best their local environment has to of-
fer, they are adversely affected by the inefficiency caused 
by imbalances in their global environment. 

A further complication occurs with non-adaptive traffic, 
such as UDP flows, which do not adjust to network condi-
tions.  Under congestion, this type of traffic exhibits loss 
that can disrupt services like voice-over-IP.  Unconstrained 
non-adaptive traffic also squeezes out adaptive traffic, 
causing the latter to reduce its effective throughput while 
UDP traffic continues to dominate transmission[6].  By 
segregating and managing different classes of service, the 
network avoids these and other conditions of service deg-
radation. 

B. The Trouble with Merely Adding Network Capacity 

Internet capacity is rapidly increasing to keep up with 
growing demands from users.  Information from carriers 
indicates that to accommodate a doubling of capacity at the 
network-access edge requires that the core expand by a 
factor of 8 to 10.  Placing this capacity exactly where it is 
needed is a formidable task, as network sources and sinks 
vary, with not only time of day, but also the advent of new 
Internet services. 

Systems like Napster alter dramatically the load patterns in 
a network by changing a large number of traffic sinks into 
a distributed set of traffic sources.  Internet sites wax and 
wane in popularity, causing shifts in overall network de-
mands.  Carriers report that loads far from link saturation 
can adversely affect performance.  The chaotic behavior of 
traffic implies that even extremely lightly loaded links (less 
than 3% utilization) exhibit loss.  Having exactly the right 
amount of capacity in the right location is difficult in a 
changing environment.  We contend that by adding a layer 
of global management, we can better respond to and con-
trol large-scale networks 

C. The Role of Multi-Protocol Label Switching 

MPLS[16] offers Traffic Engineering, which provides effi-
cient control over the paths that packets take as they trav-
erse a network[2].  The ability to control these paths is at 
the heart of Rondo’s ability to manage network congestion.  
An optimal set of logical routes or LSPs (Label Switched 
Paths) through the network leads to efficient utilization if 
the traffic flows are assigned carefully to the LSPs.* Net-
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work administrators may construct multiple paths to the 
same destination, thereby overcoming a significant short-
coming of conventional destination-based IP routing.  
Adaptive and non-adaptive traffic may be separated to in-
sure proper quality of service. Bandwidth may be explicitly 
allocated to meet any service-level agreements in place 
between the network provider and the uses. 

A secondary benefit of MPLS is increased forwarding effi-
ciency.  Packets are assigned to FECs (Forwarding Equiva-
lence Classes) and enter into LSPs at the ingress router.  
Once assigned to an LSP, intermediate routers examine 
only a minimal header to determine the next hop for the 
packet.  This scheme substantially reduces the amount of 
processing that occurs at intermediate hops although recent 
strides in gigabit and terabit IP-routing processors alleviate 
the concern over processing time. 

Figure 1 shows a typical scenario that arises in Rondo 
when using destination routing based on finding the short-
est path.  Traffic from nodes A to C and from nodes B to C 
flows along a common set of network segments.  With 
explicit routing through MPLS tunnels, the data from node 
B to C can be rerouted to a longer but more lightly con-
gested path.  The ability to monitor the global state of the 
network coupled with the fine control afforded by MPLS 
makes congestion control possible in Rondo. 

II. THE RONDO ARCHITECTURE 

Rondo uses a feedback loop to govern the behavior of traf-
fic in the network core.  It manages the flows that originate 
and terminate between various PoPs (Points of Presence) in 
the network by directing these flows into the multiple 
pathways that are created using MPLS Label Switched 
Paths.  These LSPs serve as conduits through the network 
that are unaffected by the local optimization strategy of 
shortest path routing.  Rather, Rondo optimizes perform-
ance based on global traffic considerations in the network. 

A

B

C

Figure 1.  A typical scenario for congestion.  Traffic
from A to C and from B to C will typically follow
the same path causing congestion in the common
links.  With MPLS, traffic from B to C can be re-
routed along the lower routers, eliminating the
overused links. 
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A. System Components 

Rondo is composed of the major parts shown in Figure 2. 
In the remainder of this paper, we will describe each ele-
ment with emphasis on the data collection subsystem and 
the analysis engine. 

1) Physical Network 

The experimental network is a set of 10 MPLS-enabled 
routers and interconnections patterned after a much-scaled-
down representation of a major service provider’s network 
backbone as depicted on their web site.  We note that the 
provider has 2500 PoPs worldwide so our model has only 
rough equivalence to reality.  However, even with only ten 
routers, our network exhibits complex and often fascinat-
ing behaviors.  Routers are connected with 10-megabit 
links, which makes possible the creation of realistic over-
load conditions.  Each router models a PoP (Point of Pres-
ence) on the network where customer nodes are attached.  
In Rondo, each node attached to a PoP is a PC that sends 
and receives packets. 

The network uses a combination of Cisco® 3620 and 3640 
series routers.  The release of Cisco’s IOS (Internet Operat-
ing System) available on our routers allows only destina-
tion-based selection of MPLS tunnels.  Upgrades will ulti-
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mately allow selection of the tunnels based on other pa-
rameters in the IP packet. 

2) Programmable Load Generators and Loading 
Strategy 

We use a collection of PCs programmed[1] to generate 
time-varying loads similar to those expected in an opera-
tional network.  Background network traffic on the net-
work is constant in time and is generated by commercially 
available packet generators.  Loads are carefully crafted to 
cause a buildup of congestion that does not have an overall 
steady state solution, and are designed to stress the given 
physical topology. 

3) Data-Collection System 

The data-collection system uses a variety of devices and 
techniques to monitor the conditions in the network.  These 
include both active and passive methodologies that capture 
such characteristics as throughput, loss, delay and jitter.  
Data collection, a key part of Rondo, uses an extensible 
architecture to provide rapid processing of data under time 
constraints for its collection, reduction and transmission. 
Data flow from the network probes through the collection 
system to the analysis engine with little latency and to ar-
chival storage at a lower priority.  Data are retained in a 
database system for other applications such as service-level 
management that do not require rapid data processing.  We 
describe this part of the system in detail below. 
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Figure 2.  Overall Rondo architecture illustrating the relationship among major functional components. 
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4) Data Model and Database 

Rondo uses the database for a variety of classes of informa-
tion including physical and logical network topology, con-
figuration information and archived measurement data.  
The algorithms, displays and other components are driven 
by the information described by this model, and as such, 
the organization of this model is crucial to the effective-
ness of Rondo.  The model, which is important for other 
applications, is realized in a relational database.  The most 
important function of the database is to hold the state of the 
network topology, which changes as the system reroutes 
LSPs to alleviate congestion.  The analysis and reroute 
engine periodically updates the topology as the network is 
reconfigured. 

5) Analysis and Rerouting Engine 

This element of the system contains techniques for detect-
ing congestion in a network and altering the existing traffic 
flows to eliminate an overload condition.  The engine is 
designed to focus on more than link utilization, which is 
the most basic metric of network performance.  Utilization 
indicates the level of activity between network elements 
and is often viewed as a measure of network congestion. 

This view is too simple when one considers the classes of 
traffic that flow over an IP network.  High utilization of a 
link is one form of congestion, but others might include 
excessive delay, jitter or high packet loss, all of which 
could happen at relatively low levels of link utilization.  
These are measures of congestion that seriously affect pro-
posed services in next-generation IP networks, including 
voice and video.  The engine is designed use any measur-
able quantity as an indication of a network problem that 
needs correction. 

6) MPLS Configuration and Control 

Rondo relies on MPLS to form explicit paths through the 
core network.  Explicit paths allow precise control over the 
placement of traffic flows within the routed domain of 
Rondo.  All traffic in Rondo flows through explicitly 
routed MPLS tunnels, which specify each node along a 
path from the ingress to egress routers.  The network con-
figuration is initially optimal in the sense that all tunnels 
travel via the shortest path in the network.  Once estab-
lished, packets enter the MPLS tunnels as a function of 
their destination address and are delivered to the egress 
router.  Rondo thus uses MPLS as a mechanism for packet 
forwarding that is not directly aware of quality of service.  
Mixing packets with different levels of quality of service in 
an LSP is possible though but limits the effectiveness of 
available controls. 

Once the initial explicit paths are established, the analysis 
and reroute engine operates to reroute packets through a 
path established by a new MPLS tunnel, which may no 
longer be the shortest path. This action currently takes 
place via IOS commands that are issued from the control-
ler[4].  When MPLS traffic-engineering MIBs[5][18][19] 

become available, the controller will use SNMP to estab-
lish the new routes. 

B. System Operation 

The analysis and rerouting engine is in overall control of 
the system.  The engine communicates with the data col-
lection system to establish a schedule of network meas-
urements.  As the data collection system takes each meas-
urement, it notifies the analysis and rerouting engine of the 
presence of new data.  The engine combines the new data 
with the current system configuration and previous data to 
decide on the appropriateness of rerouting an MPLS tun-
nel.  If a move is appropriate, the analysis engine reconfig-
ures the network through the LSP configuration control 
and updates the network state in the database. 

As we discuss in the following, the route of the new MPLS 
tunnel does not necessarily preserve overall network opti-
mality.  Rather our goal is to reroute traffic as quickly as 
possible to minimize the congestion at the expense of 
achieving a theoretical optimum over the whole network. 
Global optimization might imply moving many or even all 
the routes in the network.  The strategy in Rondo is to 
move from one to a few MPLS tunnels over a period of a 
few minutes with minimal disruption to network traffic.  

III. ALGORITHM 

The heart of the analysis and rerouting engine is the rerout-
ing algorithm, which is described in detail in this section.  
We first outline some assumptions delineating the opera-
tion of the algorithm and then give a systematic exposition. 

A. Assumptions 

1. The network is assumed to contain enough physical 
nodes and links so that sufficient alternate paths exist 
to make the possibility of rerouting practical.  

2. The path selection algorithm is not required to be op-
timal.  The goal is to reroute traffic as quickly as pos-
sible to minimize the amount of affected traffic.  The 
path is selected subject to constraints on bandwidth 
consumption and hop count, but path selection does 
not consider the improvements that can be obtained 
with a global analysis of the network.  For example, 
simultaneously rerouting multiple LSPs is not consid-
ered. 

3. The state of the system is available and can be used to 
relate a congested link back to the set of LSPs that 
contribute to the traffic on that link. 

4. Information about the state of each link is measured 
and available for the analysis and rerouting engine.  
These measurements include utilization, delay, loss 
and jitter for each LSP on each link.  In the simpler 
case where delay, loss and jitter are not considered, 
bandwidth utilization of each LSP on each link will 
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permit the rerouting of traffic within the available 
bandwidth space on other links.  

5. Where there are several classes of service on a net-
work, the algorithm assumes each class of service is an 
overlay network that is independent of the others.  The 
algorithm will only manipulate LSPs that are assigned 
to a single class.  It will not attempt to vary the amount 
of traffic carried in total on each class.  The class-of-
service settings are established during the configura-
tion process and are not adjusted in response to short 
term needs.  For example, assuming gold, silver, 
bronze and best-effort network classes, this algorithm 
will not displace silver traffic to accommodate exces-
sive gold traffic.  It also will not permit excessive sil-
ver traffic to consume unused gold capacity, as the lat-
ter can become unavailable at any moment. 

B. Invocation 

The analysis and rerouting engine holds the current state of 
the network, so it drives the execution of the algorithm.  
The engine accepts link congestion data from the data-
collection system, which notifies the engine every t sec-
onds.  The data levels are divided into two zones: normal 
and danger.  A link is considered to be in the normal zone 
if its datum is under M, a tunable parameter, and is in the 
danger zone when it is over or equal to that value.  After 
accepting the data, the engine also checks and collects 
links that are in the danger zone into a set S.  If S is non-
empty at the end of an update cycle, then the rerouting al-
gorithm is triggered.  When the algorithm reroutes an LSP, 
the data reading cycle is increased to T to allow time for 
the network to stabilize. 

While several types of data may be collected from the net-
work, Rondo currently uses link utilization as its metric.  
Data on link loads arrive at the engine every 30 seconds (t 
= 30), at which time links over 80% capacity (M = 0.8) are 
placed in the set, S, of candidates for rerouting.  After re-
routing, the network is allowed to settle for 60 seconds (T 
= 60) to eliminate possible thrashing. 

C. Algorithm Details 

The algorithm discussed here is designed to reduce the 
utilization on overloaded links to below the threshold of 
congestion, M.  It could as well apply to other metrics of 
congestion, e.g. delay, loss or jitter, provided a model ex-
ists for the composition of these parameters under the ag-
gregation of network traffic flows. Utilization composes by 
the addition of the utilizations of the individual flows until 
link capacity is reached. 

The goal of this algorithm is to reduce as many overloaded 
links as possible.  Each invocation of the algorithm consid-
ers rerouting one LSP in the candidate set, S, and uses link 
bandwidth in the calculation of the cost.  The steps in-
volved are as follows: 

1. Examine all links for aggregate indications of conges-
tion.  As explained above, a link is congested if its 
utilization is over the pre-configured threshold M.  

2. For all congested links, acquire the set L of LSPs that 
pass through any congested links. 

3. Sort L according to the impact of congestion on par-
ticular LSPs.  In the simplest case, this is by descend-
ing order of consumed bandwidth. 

4. Perform a constrained shortest path first (CSPF) 
search to find an optimal path, l', from the source of L 
to the sink with the least cost, using a modified 
Dijkstra's algorithm for single source to single destina-
tion shortest path algorithm.  The objective function 
for establishing the link cost is a complex function of 
link utilization and other constraints to improve the 
overall distribution of LSP loads.  For example, our 
initial function operated solely on resulting link band-
width. We are investigating the incorporation of other 
factors such as avoiding back-up links or mutually in-
terfering traffic flows. 

5. Among the paths found in step 3, select the LSP, l, 
with the least cost alternative optimal path, l'. 

6. Reroute the selected LSP. 

7. Update the link load statistics to account for the re-
routed LSP.  The system continues to maintain a short 
history of the network loads. 

IV. DATA COLLECTION 

The heart of collecting data from the network lies in the 
network probes.  These are usually commercial hardware 
boxes – often stand-alone, sometimes associated with 
routers – that measure network traffic at various protocol 
levels. Probes present the data they collect in a variety of 
often-inconsistent ways.  The job of the data-collection 
subsystem is to regularize and reduce the data so the other 
parts of the Rondo system have timely and efficient access 
to it. 

The requirement of timely and rapid collection arises from 
the need for system stability in the network.  As a rule of 
thumb, the delay in corrective action taken in the network 
should be several times as long as the time taken to per-
ceive the need for a correction.  Thus if Rondo inspects the 
network every 30 seconds, the data it has available should 
not be more than 3 seconds old.  We easily meet this re-
quirement with the distributed architecture outlined below.  
There are further requirements for stability that are ex-
plored in the previous section. 

In what follows, we outline the diverse nature of some of 
the probes needed in Rondo.  The variety of the data, the 
processing necessary for Rondo and the magnitude of the 
data stream argues for a distributed collection system with 
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peer-to-peer relationships and significant processing power 
close to the elements being measured.  Reducing the data 
near its source, aggregating the reduced data into efficient 
packages and efficiently transmitting the data to the control 
elements of the system is key to automating the manage-
ment of a network.  The sections that follow cover the is-
sues of synchronous versus asynchronous readout of the 
data, distributed versus centralized data reduction and 
methods for archiving the data[14].  

A. Probes 

This section explores some of the characteristics of probes 
that make necessary a relatively complex framework for 
data collection.  Network probe is the generic term for 
hardware or software that contains or uses a network inter-
face to measure data moving through a network.  Within 
this broad definition, there are many styles of probe. 

One of the most common types for network measurements 
is based on SNMP (Simple Network Measurement Proto-
col[7]), which does not address the form and type of col-
lected data.  SNMP has rather low-level functionality and 
high overhead, which makes it relatively inefficient in 
large-scale networks.  Its primary advantage is its ubiquity.  
SNMP defines how data move between the probe (often 
termed an agent) and the client (often referred to as a 
monitor). 

A MIB (Management Information Base) defines the data 
structures, which are accessed synchronously through an 
addressing scheme based on a hierarchical name space.  
MIBS are fundamentally a definition of a global data space 
that has no inherent operations except reading and writing 
data cells through the protocol.  Relatively recent exten-
sions have added operations that are more complex by de-
fining control variables that implement what amounts to 
function calls. 

In addition to synchronous data transfer, SNMP has a 
primitive facility that allows the probe to send event notifi-
cation to its client.  These events are termed traps, and are 
not used in the collection system 

1) MIB-2 

The IETF (Internet Engineering Task Force) defines a wide 
variety of MIBs, all of which fall into two broad categories 
with some overlap, management MIBs and traffic-
engineering MIBs.  The Rondo collection subsystem is 
concerned only with the latter.  The most commonly used 
MIB with a traffic engineering component is MIB-
2[8][9][10][11], which is totally passive and enables packet 
and octet counts for physical and sometimes logical inter-
faces at the link level.  Data are collected from packets 
passing both to and from an interface.  Most computers and 
routers define MIB-2 in their SNMP servers.  One of the 
most notable attributes of MIB-2 is its complete lack of 
awareness of IP and higher-level protocols when monitor-
ing network traffic flows.  It measures only link-level 
packets and records total counts not just the packet pay-

load.  Still it is a useful tool and provides important data to 
Rondo. 

The notion of an interface is ultimately relatively com-
plex[12].  MIB-2 was originally developed as a tool for 
counting packets and octets through a NIC (Network Inter-
face Controller) in computers and routers.  These serviced 
Ethernets, token rings, T1’s or similar connections.  MPLS 
(Multi-Protocol Label Switching) occupies an unusual po-
sition in the protocol stack. MPLS is not a network layer 
protocol since it lacks end-to-end addressing and routing 
functionality. Further, MPLS is not a link-level protocol, 
since MPLS constructs such as LSPs can span multiple 
routers. Vendors typically represent LSPs in one of two 
methods. (1) LSPs are represented as logical interfaces or 
as tunnel interfaces; (2) LSPs are represented as entries in 
the routing table.  Cisco’s implementation uses (1) and 
hence the head-end of each LSP has an interface definition 
in MIB-2.  The data derived from these LSP interfaces are 
important tools for congestion control in Rondo. 

2) RMON 

RMON[21] and RMON-2[20] are passive SNMP-based 
probes that are more sophisticated than the MIB-2 probes.  
These probes are aware of IP, TCP and application-level 
layers in the protocol stack.  Although not aware of indi-
vidual sessions at these upper layers, RMON-2 can moni-
tor flows between pairs of source and destinations or flows 
to or from a single address at the network protocol or ap-
plication level.  We define flows as streams of packets with 
specified source and/or destination addresses without re-
spect to transport-level sessions.  Inspecting the well-
known port numbers present in the source or destination 
addresses monitors the application layers.  In addition to 
these functions, RMON and RMON-2 can define arbitrary 
filters and either count or capture packets that satisfy the 
filter.  They can also fire traps based on thresholds or cap-
ture time sequences of network measurements.  

RMON and RMON-2 have capabilities defined in the IETF 
standards documents that outstrip the vendors ability to 
implement.  This statement is particularly true on links 
with high data rates that transport traffic among many 
sources and destinations.  Typically, RMONs are built into 
a router, or they may exist as stand-alone hardware de-
vices.  In either case, RMONs are prone to exhaust mem-
ory or processor resources when configured to measure 
large amounts of data.  Pair-wise flows on busy links can 
yield an immense traffic matrix.  Data captured at high 
rates exhausts buffer space beyond the ability of the client 
to retrieve it.  Many routers use the same the processor for 
routing and monitoring functions at the expense of moni-
toring under heavy load. 
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3) Service Assurance Agent 

Cisco's Service Assurance Agent� (SAA) is an active 
monitoring agent that is embedded in Cisco's larger 
routers.  Cisco's network monitoring and management 
products, such as CiscoWorks2000™ use SAA as their 
source of performance data.  Provisioning of and data ex-
traction from SAA can be done through SNMP, and Cisco 
publishes the MIB description[13], which makes SAA 
available for use by third-party software.  At the network 
layer, SAA provides a simple echo facility that can com-
pute round trip delays and count packet drops using nu-
merous protocols, including IP, SNA, IPX, appleTalk and 
DECnet.  The equipment at the far end only needs to pro-
vide an appropriate echo service, and need not be supplied 
by Cisco. SAA also can measure jitter using UDP.  These 
measurements are one-way (source to destination and des-
tination to source), so a Cisco router is required at the other 
end to return the traffic.  The data provided can also be 
used to calculate one-way loss and delay.  SAA can also 
measure response times of higher-level services, including 
TCP connections, DNS, DHCP, FTP and WWW. 

4) In-Line Probes  

Certain manufacturers are building probes that intercept 
the packet stream to insert tagging packets that mark points 
in the flow.  The probes operate in pairs with the sending 
end inserting the tag and the receiving removing the tag, 
which carries reference data about the packet stream.  For 
example, these data might consist of time-stamps, counts 
of packets sent or received since the last tag packet.  With 
this sort of synchronization various quantities become 
available that are difficult to compute with other methods 
including absolute measurements of packet loss. 
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5) Rondo Softprobe 

Many other probes (e.g. [3][15]) exist on the net and in the 
literature that we cannot cover in this paper.  However, an 
especially useful set of measurements to have for conges-
tion control includes delay, loss and jitter for a one-way 
packet transit of the network.  These measurements should 
be taken through MPLS tunnels if present and at all level 
of QoS (Quality of Service).  Measuring one-way delay, 
loss and jitter requires accurate, absolute time scales at 
both the sending and receiving nodes.  In the past, this re-
quirement has been difficult to meet, but now with easily 
available GPS receivers, it is possible to satisfy.  The 
Rondo Softprobe provides these measurements to Rondo 
[17].  The SoftProbe is an active probe.  It samples the 
quantities it needs by emitting a stream of packets.  Delay, 
loss and jitter are computed from timing measurements of 
the packet stream. 

6) Probe Attributes 

The probes discussed above may be classified according to 
certain attributes that affect their interaction with the data 
collection subsystem.  These attributes are summarized in 
the following: 

Intrusiveness – A probe may have the packet stream 
pass through its fabric enabling it to insert and remove 
packets that function as markers in the flow.  The 
overwhelming majority of probes are out-of-line with 
respect to the packet stream.  They can be physically 
inserted or removed from the system without disrupt-
ing the flow.  In-line probes require the stream to be 
physically disconnected before the probe is inserted. 

Probe Type Intrusiveness Activity Solicitation Standard Independent 
Collection 

MIB-2 Out of line Passive Synchronous SNMP No 

RMON Out of line Passive Synchronous SNMP Yes 

SAA Out of Line Active Synchronous SNMP Yes 

SoftProbe Out of Line Active Synchronous Ad Hoc Yes 

Ping Out of Line Active Synchronous Ad Hoc No 

“Future” In Line Active Synchronous Ad Hoc ? 

Table 1. The attributes of various probes mentioned in the text.  MIB-2, RMON, SAA and SoftProbe are 
used with Rondo.  The “Future” types of probe are not yet available from their manufacturers. 
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Activity – A probe may obtain its data by passively 
monitoring the traffic flow, or it may actively insert 
packets in the stream to take it measurements.  The at-
tribute is distinct from the intrusiveness of the probe.  
The ping command running on a PC connected to an 
Ethernet is active but out-of-line.  One can disconnect 
the computer without disrupting the network. 

Solicitation – A measurement might be requested syn-
chronously from a probe, in which case the client 
waits for the result, or it might be sent asynchronously 
as part of a notifying event.  The latter might occur if a 
threshold were crossed as part of a measurement se-
quence.  Most probes operate synchronously, but our 
architecture allows watching the data stream and emit-
ting notifying events to the rest of the system. 

Standard – Most commercial network probes use 
SNMP to communicate with the client, but other stan-
dards are possible including CORBA, EJB, JMS, 
DCE, etc. 

Independent Collection – Rather than counters 
measuring packets and octets, independent collection 
implies a higher level of functionality.  A probe might 
collect a table of measurements over a certain period 
and might further reduce the data into a few derived 
quantities. 

Table 1 classifies the probes discussed in the text accord-
ing to these attributes.  The following sections discuss the 
architecture of the Rondo data collection subsystem and 
out-lines how this architecture adapts to each of the attrib-
utes. 

B. Data Collection Architecture 

Rondo uses an object-oriented architecture.  The data col-
lection subsystem uses the five base classes shown in Fig-
ure 3.  Each class contains the fundamental methods that 
manage data collection.  Each of these classes is special-
ized in a fully realized data collection subsystem. 

 

Figure 3.  The Rondo architecture showing the principle base classes.  Implementation classes are all derived 
from these.  Method calls that cross the client-server boundary are made through Java RMI (Remote 
Method Invocation). 
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Figure 3 depicts a client-server architecture.  The funda-
mental class on the server side is the Collector, which 
oversees the management of a particular type of data.  In 
Rondo, these include data from MIB-2 interfaces, MPLS 
forwarding tables and SAA timing measurements.  We 
intend that the client-side Monitor activates a single copy 
of a particular Collector on each server.  For example, a 
server would have a single instance of the interface-data 
collector and a single copy of the SAA-data collector. 

Each Collector uses the createStream method to instantiate 
one or more MeasurementStream objects.  A Measure-
mentStream, as the name implies, is a sequential, time-
stamped set of data of the type specified by the Collector 
that arises from a particular device or agent.  For example, 
each MIB-2 interface is the source of a stream of Inter-
faceMeasurement objects.  Associated with each Meas-
urementStream is a stream pointer that is analogous to a 
file pointer in the Unix operating system.  The getMeas-
urement method reads a group of data points specified by 
the size parameter in the method and advances the stream 
pointer by that amount.  Other methods present in the Col-
lector class include cloneStream, which is analogous to the 
dup system call in the Unix operating system, getStream, 
which returns a MeasurementStream by the name assigned 
to it during its creation, and listStream, which reports the 
names of all active MeasurementStream objects. 

Another important method in MeasurementStream is con-
trolStream, which determines that starting time, stopping 
time and frequency of measurements for a given Measure-
mentStream.  A stream may have its parameters changed 
asynchronously.  It need not complete the current course of 
measurements before its collection parameters are modi-
fied in any way. 

Associated with each MeasurementStream are one or more 
StreamPolicy objects, which are passed as arguments from 
a Monitor into the registerMonitor method of the Meas-
urementStream class.  StreamPolicy objects are extensions 
of a Monitor.  They should contain logic that is intended to 
reduce data near to the point of measurement.  For exam-
ple, suppose that the Hurst parameter were important to a 
particular network-management function.  Rather than 
move all the data to a centralized processor, we believe a 
superior design processes the collected data close to the 
source.  Another function that might be included in a 
StreamPolicy object is threshold detection, which implies 
asynchronous notification of the client. 

StreamPolicy objects support this capability through asso-
ciated MonitorAction objects, which contain callback 
methods from the server side to the client.  The base class, 
MonitorAction, has a few fundamental methods defined, 
but the intent is for the application to extend this class in 
ways specific to the needs of the problem.  The methods, 
highWater and Overflow, are notifications to the applica-
tion that data in a MeasurementStream need attention.  The 
exception method is intended as a general alarm for server-
side problems and sendData provides an asynchronous 
update capacity. 

The MeasurementStream class also contains methods to 
register and de-register StreamPolicy objects (register-
Monitor and deregisterMonitor) as well as a method to 
check the status of a StreamPolicy (checkMonitor).  Indi-
vidual StreamPolicy objects are referenced by an identifier 
that is unique in time and space. 

StreamPolicy objects and their associated MonitorAction 
objects form the basis of a general and flexible computa-
tional model.  Because both classes are logically part of an 
application, they can be tailored to meet the needs of a par-
ticular network management problem without having to 
custom tailor the data collection servers to deal with the 
changing needs of applications.  The servers can concen-
trate on efficient data collection and stewarding.  The ap-
plications have the ability to offload some processing to 
the servers, thereby reducing the flow of data across the 
management network and the amount of data reduction 
necessary.  This strategy is particularly effective when 
coupled with automatic code distribution as we discuss in 
the following section. 

C. Design and Implementation 

The Rondo data collection architecture is realized as a set 
of Java classes.  Each of the types discussed above is either 
an abstract base class or an interface definition. We con-
struct the collection system using standard Java-based 
tools, but other implementations and programming para-
digms fit the architecture as well. 

1) Programming Paradigms 

Data collection in Rondo uses the Java RMI (Remote 
Method Invocation) subsystem as its method of distributed 
computing.  Both advantages and disadvantages arise from 
this decision.  RMI is fundamentally formulated with re-
mote procedure calls and threads as the most important 
entities.  Each thread holds state, and the several threads 
comprising a process must synchronize their operations on 
shared data.  Certain threads are allowed to block as in the 
class that contains the timed measurement loop, because 
others threads are live and waiting to process other remote-
procedure calls.  This sort of design is relatively easy for 
developers to handle because of the sequential nature of 
the processing, but can lead to pitfalls when dealing with 
access to shared data.  We chose this design as a vehicle 
for a prototype implementation because it was easy to set 
up in a laboratory environment.  

However, our architecture is not limited to this style of 
programming.  A more common approach for large sys-
tems is the more loosely coupled software bus, which is a 
message passing system at its base.  Each entity on the bus 
registers its interest in receiving certain classes of message 
through a publish-and-subscribe mechanism.  The method 
calls devolve into lower-level messages and, while threads 
are not as important in this programming style, they are 
still available to the developer. 
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For example, timed measurement loops work differently in 
this paradigm.  Instead of sleeping within a thread, the 
message requesting a measurement waits in a queue for 
delivery at a specified time.  At message delivery the sys-
tem takes a new measurement and requeues a new meas-
urement message for delivery at the next time interval.  All 
state required to control the measurement loop is retrieved 
at the beginning of each measurement and stored at its end. 

Independent of programming paradigm, Java has a large 
advantage over other systems because of object serializa-
tion and automatic code distribution, which is a concomi-
tant feature of serialization.  RMI passes local objects by 
value and has a feature allowing the receiving process to 
find the object-method code through a standard URL.  Re-
mote objects, i.e. those with remotely invoked methods, are 
passed by reference through a standardized stub generation 
technology.  In our application, StreamPolicy objects, 
which are local Java objects, pass by value through the 
system.  Because these tend logically to be part of an ap-
plication, its functionality is automatically distributed 
throughout the system without recourse to explicit software 
upgrades.  Each application can customize its view of the 
same data stream without explicitly changing the function-
ality of the server. 

2) Probes and Data Collection 

We discussed the characteristics of various types of net-
work probe in Section IV. Four of the five attributes affect 
the design of the data collection system – Activity, Solicita-
tion, Standard and Independent Collection.  The probes 
listed are consistent with the architecture of the data collec-
tion subsystem. The MeasurementStream class and its de-
scendents have the capacity to isolate the functional details 
of collection technology from the rest of the system.  

V. DISCUSSION AND ISSUES 

A prototype of the Rondo system has been running in a 
laboratory environment since September of 2000.  Rondo 
collects packet and octet counts for physical network inter-
faces and virtual LSP interface using MIB-2.  Delay and 
jitter are collected using SAA.  Packet forwarding data for 
LSPs are collected at intermediate routers in an LSP using 
an ad-hoc connection to the command-line interface of 
IOS.  All of these sources fit within the Rondo measure-
ment framework, which forwards the data to the analysis 
and rerouting engine. 

 

 

Figure 4.  The main screen in the Network Operations Center for Rondo.  The Rondo laboratory network 
is based on Cisco routers using 10 MBit Ethernets as links. Our experimental network is modeled after a 
large network provider’s core infrastructure.  Although depicted here in black and white, the colors on 
each link in the display represent utilization from the highest, red, to lowest, dark green, according to the 
scale at the bottom of the display. 
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We have constructed a graphical user interface, shown in 
Figure 4, that might be used in a Network Operations Cen-
ter as part of Rondo.  In the current implementation, the 
analysis and rerouting engine controls the display.  In a 
system that controls a deployed network, the analysis and 
rerouting engine would be separate from the user interface. 

The NOC display shows a map of the United State with the 
“location” of each PoP in our experimental network.  Con-
trols at the top of the display allow the operation to start 
and stop automatic congestion control.  Although the fig-
ure is black and white here, the inter-PoP links indicate 
their utilization as a series of colors from highest utiliza-
tion, red, on down through the colors of the spectrum to the 
lowest utilization, dark green.  Links are bi-directional with 
the attached numbers giving link utilization in each direc-
tion. 

At the moment depicted, Rondo has just rerouted an MPLS 
tunnel  

• from LA→SLC→ATL→DC 

• to LA→SLC→ATL→DC 

because the ATL→DC link was overloaded.  The new 
route has a series of dashes running through it and the old 
route has the dashes alongside. 

Although Rondo works well as a proof of concept in a 
laboratory environment, there are many issues remaining 
as it moves towards deployment in a full-scale network.  
We outline some of the more difficult ones here. 

• Although Rondo has proven stable under rerout-
ing of single LSPs with a small network, what 
happens in a larger network? 

• Can Rondo move several LSPs in one operation to 
handle cases of simultaneous overloads? 

• Can Rondo move several LSPs in one operation 
for a single overloaded link to achieve a more op-
timal solution?  Over what domain of LSPs 
should optimization take place? 

• We believe our method of pushing application 
functionality to servers distributed in the network 
is a scalable solution, but it should be tested in a 
production environment with a larger data flow. 

• What strategies are there to reduce the amount of 
data that the analysis and rerouting engine needs 
to make intelligent changes in MPLS tunnels? 

REFERENCES 

[1] B. Adamson, The MGEN Toolset, 
http://manimac.itd.nrl.navy.mil/MGEN. 

[2] D. Awduche, J. Malcolm, J. Agobua, M. O'Dell, J. McManus, 
Requirement for Traffic Engineering for MPLS, RFC 2702, Septem-
ber 1999. 

[3] N. Brownlee, Traffic Flow Measurement: Meter MIB, RFC2720, 
October 1999. 

[4] Cisco™ Configuration Guides and Command References, 
http://www.cisco.com. 

[5] J. Cucchiara, H. Sjostrand & J. Luciani, Definitions of Managed 
Objects for the Multiprotocol Label Switching, Label Distribution 
Protocol (LDP), draft-ietf-mpls-ldp-mib-07.txt, August 2000. 

[6] J. P. Curtis, J. G. Cleary, A. J. McGregor & M. W. Pearson, 
Measurement of Voice Over IP Traffic, Pam2000: Passive and Ac-
tive Measurement Workshop, Hamilton, New Zealand, pp 43-59, 
April 2000. 

[7] D. Harrington, R. Presuhn & B. Wijnen, An Architecture for 
Describing SNMP Management Frameworks, RFC 2571, April 
1999. 

[8] K. McCloghrie & M. Rose, Management Information Base for 
Network Management of TCP/IP-based Internets: MIB-II, RFC 
1213, March 1991. 

[9] K. McCloghrie, SNMPv2 Management Information Base for the 
Internet Protocol using SMIv2, RFC 2011, November 1996. 

[10] K. McCloghrie, SNMPv2 Management Information Base for the 
Transmission Control Protocol using SMIv2, RFC 2012, November 
1996. 

[11] K. McCloghrie, SNMPv2 Management Information Base for the 
User Datagram Protocol using SMIv2, RFC 2013, November 1996. 

[12] K. McCloghrie & F. Kastenholtz, The Interfaces Group MIB 
using SMIv2, RFC2863, June 2000. 

[13] L. Metzger, Response Time Monitor MIB, 
ftp://ftp.cisco.com/pb/mibs/v2/CISCO-RTTMON-MIB.my. 

[14] V. Paxson, G. Almes, J. Mahdavi & M. Mathis, Framework for 
IP Performance Metrics, RFC 2330, May 1998. 

[15] V. Paxson, A. Adams & M. Mathis, Experiences with NIMI, 
PAM 2000: Passive and Active Measurement Workshop, Hamilton, 
New Zealand, pp. 87-97 April 2000. 

[16] E. Rosen, A. Viswanathan & R. Callon, Multiprotocol Label 
Switching Architecture, RFC 3031, January 2001. 

[17] B. Siegell, J. DesMarais, M. Garrett, P. Seymour & D. Shall-
cross, Felix Project: Topology Discovery From One-Way Delay 
Measurements, PAM 2000: Passive and Active Measurement Work-
shop, Hamilton, New Zealand, pp 107-115, April 2000. 

[18] C. Srinivasan, A. Viswanathan & T. Nadeau, MPLS Traffic 
Engineering Management Information Base Using SMIv2, draft-ietf-
mpls-te-mib-05.txt, November 2000. 

[19] C. Srinivasan, A. Viswanathan & T. Nadeau, MPLS Label 
Switch Router Management Information Base using SMIv2, draft-
ietf-mpls-lsr-mib-07.txt, January 2001. 

[20] S. Waldbusser, Remote Network Monitoring Management In-
formation Base Version 2 using SMIv2, RFC 2021 January 1997. 

[21] S. Waldbusser, Remote Network Monitoring Management In-
formation Base, RFC2819, May 2000. 

 


	Introduction
	Network Management Concerns
	The Trouble with Merely Adding Network Capacity
	The Role of Multi-Protocol Label Switching

	The Rondo Architecture
	System Components
	Physical Network
	Programmable Load Generators and Loading Strategy
	Data-Collection System
	Data Model and Database
	Analysis and Rerouting Engine
	MPLS Configuration and Control

	System Operation

	Algorithm
	Assumptions
	Invocation
	Algorithm Details

	Data Collection
	Probes
	MIB-2
	RMON
	Service Assurance Agent
	In-Line Probes
	Rondo Softprobe
	Probe Attributes

	Data Collection Architecture
	Design and Implementation
	Programming Paradigms
	Probes and Data Collection


	Discussion and Issues
	References

