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ABSTRACT
When measuring the Internet it matters what vantage points are
used to conduct measurements. We propose a novel means of se-
lecting vantage points, which is not based on categorical properties
(like origin ASN, or geographical location), but is based on the
topological (dis)similarity between vantage points.

We show the implementation of a similarity metric between
RIPE Atlas probes and show how it performs better for the purpose
of topology discovery, than the probe selection mechanism that is
built into RIPE Atlas.
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1 INTRODUCTION
In a measurement system with a wide selection of vantage points,
it can become a challenge to select the most appropriate vantage
points for a given measurement. RIPE Atlas, does have over 9600
active measurement vantage points, which can be selected for mea-
surement based on categorical properties, like origin ASN and
country.

When doing a measurement, a user is limited in how many
vantage points to use for his/her measurement. This is not only
due to limitations that he measurement platform imposes, but also
collecting data from a larger number of vantage points means a
larger volume to analyse and store. So it makes sense to optimize
for a minimal set of vantage points with a maximum chance of
observing the phenomenon the user is interested in.

Network operators may need to debug a network service with
only limited information about the problem ("our network is slow
for users in France!"), so doing a minimal set of measurements
that would allow selecting a wide diversity of networks could be
a valuable add-on to the tools available to network operators. If
one can say "give me 10, as diverse as possible vantage points in
France", instead of hand-picking 10 vantage points, based on the
current primitives, which are physical location and origin ASN. If a
user does have a categorical speci�cation (like "France"), a diversity
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metric would allow to select the most dissimilar vantage points, in
an attempt to explore a networking phenomenon from as diverse
angles as possible.

If one �nds an interesting networking phenomenon, one could
now again use the similarity metric to it’s advantage by selecting the
most similar vantage points to the one exhibiting the phenomenon,
in an attempt to validate the phenomenon not being a vantage point
speci�c artifact.

2 SIMILARITY METRIC
2.1 Topological Similarity
We aim to quantify the topological similarity (or diversity) of RIPE
Atlas. We say that two probes are topologically similar if the relative
network distance (in terms of routing hops) separating them is
small. We argue that topological distance is more relevant from a
measurement point of view as it is directly based on network data
rather than traditional line of sight distance, which are network-
agnostic.

Measuring topological similarity is useful as it can help in probe
selection (e.g., by warning the user that the probe she is using are
similar or indeed, diverse) and it can help in future deployment of
the infrastructure (e.g., where to deploy new probes).

While it is more useful, topological distance is also harder to
capture in practice as it depends on several dimensions. For instance,
probes in the same AS can actually see very di�erent paths (e.g.,
if there are connected to di�erent egress routers), while probes in
di�erent AS can see similar paths (e.g., if there are connected close
to the same IXP and the ASes have similar routing policies).

In the following, we show how we can capture these nuances in
a single metric. It is based on the Jaccard similarity coe�cient. It
captures the expected similarity between two probes for the paths
towards any single destination. Users interested in monitoring their
ASs from multiple vantage points at a small measurement cost may
use it to compute a set of most diverse probes according to that
metric.

We present the results of computing the this metric for all pairs
of RIPE Atlas probes.

We show that it successfully captures network proximity with
probes in the same AS being signi�cantly more similar than probes
in di�erent ASes.

2.2 Measuring topological similarity
We now de�ne our our measurement-based metric and discuss the
practical relevances.

Jaccard-based similarity Let x and y be the two probes, we de�ne
M as the set of measurements performed by both x and y in the
interval t . Traceroutes in M let us discover a set of IPs discovered
from x and another set of IPs crossed from y. We note these sets Px
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Figure 1: About 10% (resp. 5%) of the RIPE Atlas probes see a
median Jaccard index of 1.0 in IPv4 (resp. IPv6). The large in-
terquartile range results from the variability in the number
of unique IPs encountered by each measurement.

and Py , respectively. For each destination as de�ned in RIPE Atlas
measurement speci�cations (i.e. an IP or hostname destination) we
calculate the similarity of results.

Based on this, we de�ne the Jaccard similarity coe�cient of x
and y as: d = |Px∩Px |

|Px∪Px |
.

Intuitively, a result of 1 for a pair of probes indicates they discover
the same set of IP adresses for at least half of the measurement
speci�cations, and a result close to 0 indicates very few IP addresses
were the same for at last half of the measurement speci�cations
that were in common between the two probes.

To compute the coe�cient in practice, we rely on traceroute re-
sults for a single day to compute d . For each pair of probes we �nd
the measurement speci�cations these probes have in common, this
is typically tens of speci�cations, and at least includes all built-in
measurements (§??). For each destination that two probes have in
common, we calculate the ratio of the number of IPs (not consider-
ing private addresses) seen by both probes over the union of the IPs
discovered by traceroutes from the two probes. This way we end
up with a list of Jaccard indexes per probe pair. To ensure statistical
signi�cance, we only consider the Jaccard indexes if the list is long
enough (n ≥ 17) and consider the 25th, 50th and 75th percentile of
the lists as actual coe�cients. Doing so makes the metric resistant
to outliers even though the metric is sensitive to the set of common
destinations between two probes. If the list is not long enough, we
leave the Jaccard metric for the probe pair unde�ned. We calculate
the metric for IPv4 and IPv6 separately, since these topologies are
not congruent.

Practical relevance The metric depends on the actual measure-
ment performed by the probes which bears the question of their
practical relevance. As discussed in §??, every single probes per-
form a number of (identical) built-in measurements, ensuring a
base level of common measurements. Consequently, we were able
to compute the Jaccard metric in IPv4 for 9318 probes.
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Figure 2: Being more coarse-grained, the upstream metric
classi�es more probe as similar, with up to 30% (resp. 40%)
of the pairs being considered as strictly similar in IPv4 (resp.
IPv6). The distribution is almost binary, probes tend to be
very similar or not at all.

2.3 How topologically similar is RIPE atlas?
We now compute the metric for all the pairs of probe considering
one day (31 March 2016) worth of traceroute measurements. We
show that about 30% (resp. 10%) of probes are similar when consid-
ering the upstream (resp. Jaccard-index). We also show the added
value of both two metrics with respect to simple distance-based
metric. Indeed, even though geographically close probes tend to
exhibit higher metric values, our metrics manage to capture addi-
tional interesting topological properties (such as similarity over
long-distances) or simply incorrect geolocation data for the probes.

Jaccard-based similarity Figure 1 plots the CDF of probes with
regards to the maximum similarity to another probe, considering
the 25th, 50th and 75th percentiles of the Jaccard metric (see §2.2).
We see that about 10% (resp. 5%) of probes see a median Jaccard
index of 1.0 in IPv4 (resp. IPv6). We also see that interquartile range
is relatively large. This is due to the fact that there is understandably
a large variability in the fraction of unique IPs encountered between
measurement speci�cations for a given probe pair.

Upstream-based similarity Figure 2 plots the same CDF as above
consider the upstream-based similarity instead. We see that the
upstream metric classi�es strictly more probes as similar with close
to 30% (resp. 40%) of the probes seeing a metric of 1 in IPv4 (resp.
IPv6). Intuitively, we can explain this as the Jaccard index considers
all the IPs address on the path in its computation while the upstream
metric only considers one. It therefore tends to be higher. Another
observation is that the distribution of the upstream-based similarity
is almost binary. Each pair of probes tend to see a high or a low
value. As such, the metric acts can act as a binary �lter.

Validating the metric against physical distance and detecting ge-
olocation discrepancies Intuitively, we expect probes pair with a
result close to 1 to be physically close. Table 1 shows how physical
distance and being part of the same Autonomous System or not
a�ect the median Jaccard-index. We compute the distance between
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IPv4 IPv6

Probe pairs in the same AS

# with Jaccard ind. ≥ 0.9 1805 56
25th percentile distance 7 km 0 km
50th percentile distance 40 km 2 km
75th percentile distance 104 km 17 km
Maximum distance 8,817 km 664 km

Probe pairs in di�erent ASes

# with Jaccard ind. ≥ 0.9 11 0
25th percentile distance 2 km -
50th percentile distance 9 km -
75th percentile distance 112 km -
Maximum distance 532 km -

Table 1: Pairs of probe with high Jaccard coe�cient (≥ 0.90)
tend to be geographically close (according to the location
given by the probe owner) to each other. The maximum dis-
tance (8,817km) turned out to be a geolocation error than
the metric helped catching.

probes based on the geographical coordinates provided by the probe
host.

As expected, the similarity metric is higher when the correspond-
ing probes pair belong to the same AS. Yet, we observe that few
probes in di�erent ASs produce similar results according to the
Jaccard metric. In IPv4, 1,816 pairs of probes have a Jaccard metric
higher than 90%, while 90.4% of these pairs are separated by less
than 200 km. Geographically far apart probes that have a high Jac-
card metric could indicate interesting topologies (e.g. long-distance
tunneling) or incorrect geolocation data. Indeed, our manual in-
spection of few geographically far apart probes with a high Jaccard
metric revealed a few probe geolocation errors. When we contacted
the probe hosters, we found they forgot to update probe location
after it moved, which was then corrected. In general, we believe
that the relatively high correlation between geographic location
and the Jaccard index can be used as a tool to easily spot probe
geolocation errors, and so produce a better platform, for purposes
where precise geolocation is of utmost importance. Table 2 shows
the corresponding results with the upstream metric. Again, with
physical distance the likelihood of probe pairs being similar de-
creases, and more often probe pairs in the same ASN are more
similar, which matches expectation.

3 EXPLOITING SIMILARITY
3.1 Exploiting probe similarity
Ensure a better measurement continuity RIPE Atlas probes typi-
cally have some downtime. For example, as of May 11, 2016, 4,421
probes (32%) were disconnected. To reduce the chances for gaps in
a time series of measurement results, users could run their measure-
ments on multiple similar probes instead of only one. In case one of
the probes disconnects, the user would still have its measurement
running on the backup probe(s).

Help diagnostics on the path up to the common upstream IP
Topological similarities can also help diagnostics on the path up to
and including the common upstream IP. Especially if the common
IP is the �rst public IP address in the IP path, this allows for better

IPv4 IPv6

Probe pairs in the same AS

# with IP upstream ind. ≥ 0.9 4617 5065
25th percentile distance 8 km 50 km
50th percentile distance 32 km 175 km
75th percentile distance 99 km 504 km
Maximum distance 8817 km 13753 km

Probe pairs in di�erent ASes

# with IP upstream ind. ≥ 0.9 191 73
25th percentile distance 7 km 108 km
50th percentile distance 124 km 345 km
75th percentile distance 288 km 1076 km
Maximum distance 6288 km 7636 km

Table 2: Similarly, pairs of probe with high upstreammetric
value (≥ 0.90) tend to be geographically close. With respect
to Jaccard, the upstream metric classi�es more pairs as sim-
ilar as it is more coarse-grained.

diagnostics of physical infrastructure between probe and the public
Internet.

Improve users capabilities Combining similar probes could help
users to improve their capabilities. For example, it could help users
to bypass the limitations imposed by RIPE Atlas. To increase mea-
surement frequency (initially limited to one measure per minute),
users can launch the same measurement on similar probes. By com-
bining the results of two probes, users can get one result every 30
seconds instead of one every minute.

Improve measurements precision When launching a large set
of measurements on only one probe, users may overload a probe
and lose precision [? ]. Dividing a set of measurements between
similar probes could give users the ability to run a large number of
measurements without losing precision. Similarily, if one probe is
loaded by someone else, users could use a similar but not loaded
probe so as to improve its precision.

Boost IP topology discovery by 25% An additional way to ex-
ploit our probe similarity metrics is to (dis)cover as much of the
IP topology address space as possible, given a limited probing bud-
get. As the Jaccard-based similarity metric is designed to capture
(dis)-similarity between probes based on IP topology, we explored
exploiting this by performing the following experiment: We ran
1002 experiments in which we compared RIPE Atlas’ probe selec-
tion [? ] to a custom RIPE Atlas probe selection mechanism that
selects probes based on their maximum dissimilarity. To prepare for
an experiment we select a random probe pr_init and one of the three
commonly used probe groupings (asn_v4,asn_v6 and country_code).
If there are 10 or more probes available in the same group as pr_init,
we run an experiment that compares RIPE Atlas’ default selection
mechanism to a maximum dissimilarity based selection mechanism:
First we select a probe count (n_pr) randomly between 2 and the
minimum of 100 and 1/3 of available probes in that group, and a
random destination d from the set of .1 addresses for all globally
routed IP pre�xes. We create a set of maximally dissimilar probes
Sdis , starting from pr_init, by adding the probe that has the lowest
Jaccard similarity score to any of the probes in the set, until we
reach the required count n_pr. We perform a set of traceroutes from
Sdis to d as well as a reference set of traceroutes by making RIPE
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Atlas select n_pr probes from the same group and traceroute to
d from these. We compared the total number of IP addresses dis-
covered normalized by number of probes that actually performed
measurements (this can be less than speci�ed). We found that our
maximally dissimilar probe selections, on median discovered 25%
more IP addresses per probe than RIPE Atlas’ probe selection with
the same parameters.

4 CONCLUSIONS
Outcomes:

Data: provide a page with links to all of the measurement data!
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